Enhanced multi-colour gating for the generation of high-power isolated attosecond pulses
نویسندگان
چکیده
Isolated attosecond pulses (IAP) generated by high-order harmonic generation are valuable tools that enable dynamics to be studied on the attosecond time scale. The applicability of these IAP would be widened drastically by increasing their energy. Here we analyze the potential of using multi-colour driving pulses for temporally gating the attosecond pulse generation process. We devise how this approach can enable the generation of IAP with the available high-energy kHz-repetition-rate Ytterbium-based laser amplifiers (delivering 180-fs, 1030-nm pulses). We show theoretically that this requires a three-colour field composed of the fundamental and its second harmonic as well as a lower-frequency auxiliary component. We present pulse characterization measurements of such auxiliary pulses generated directly by white-light seeded OPA with the required significantly shorter pulse duration than that of the fundamental. This, combined with our recent experimental results on three-colour waveform synthesis, proves that the theoretically considered multi-colour drivers for IAP generation can be realized with existing high-power laser technology. The high-energy driver pulses, combined with the strongly enhanced single-atom-level conversion efficiency we observe in our calculations, thus make multi-colour drivers prime candidates for the development of unprecedented high-energy IAP sources in the near future.
منابع مشابه
Isolated broadband attosecond pulse generation with near- and mid-infrared driver pulses via time-gated phase matching.
We present a theoretical analysis of the time-gated phase matching (ionization gating) mechanism in high-order harmonic generation for the isolation of attosecond pulses at near-infrared and mid-infrared driver wavelengths, for both few-cycle and multi-cycle driving laser pulses. Results of our high harmonic generation and three-dimensional propagation simulations show that broadband isolated p...
متن کاملGeneration of isolated attosecond pulses with 20 to 28 femtosecond lasers.
Isolated attosecond pulses are powerful tools for exploring electron dynamics in matter. So far, such extreme ultraviolet pulses have only been generated using high power, few-cycle lasers, which are very difficult to construct and operate. We propose and demonstrate a technique called generalized double optical gating for generating isolated attosecond pulses with 20 fs lasers from a hollow-co...
متن کاملNumerical Simulation of an Intense Isolated Attosecond Pulse by a Chirped Two-Color Laser Field
We investigate theoretically the high-order harmonic spectrum extension and numerical generation of an intense isolated attosecond pulse from He+ ion irradiated by a two-color laser field. Our simulation results show that the chirp of the fundamental field can control HHG cutoff position. Also, these results show that the envelope forms of two fields are important factors for controlling the re...
متن کاملAttosecond nonlinear optics using gigawatt-scale isolated attosecond pulses
High-energy isolated attosecond pulses required for the most intriguing nonlinear attosecond experiments as well as for attosecond-pump/attosecond-probe spectroscopy are still lacking at present. Here we propose and demonstrate a robust generation method of intense isolated attosecond pulses, which enable us to perform a nonlinear attosecond optics experiment. By combining a two-colour field sy...
متن کاملGeneration of Broadband Supercontinuum and Isolated Attosecond Pulse in a Chirped Two-Colour Laser Field
We present a theoretical investigation of high-order harmonic generation in a chirped two-colour laser field, which is synthesized by an 800 nm fundamental chirped pulse and a 1200 nm subharmonic chirped pulse. With the introduction of a polarization angle, both the harmonic cutoff is significantly extended and the spectrum intensity is effectively enhanced compared with the orthogonally polari...
متن کامل